On Granular Rough Computing with Missing Values

نویسندگان

  • Lech Polkowski
  • Piotr Artiemjew
چکیده

Granular Computing as a paradigm in Approximate Reasoning is concerned with granulation of available knowledge into granules that consists of entities similar with respect to a chosen measure in information content and with computing on such granules. Thus, operators acting on entities in a considered universe should factor through granular structures giving values similar to values of same operators in non– granular environment. Within rough set theory, proposed 25 years ago by ZdzisÃlaw Pawlak and developed thence by many authors, granulation is also a vital area of research. The first author developed a calculus with granules as well as a granulation technique based on similarity measures called rough inclusions along with a hypothesis that granules induced in data set universe of objects should lead to new objects representing them, and such granular counterparts should preserve information content in data. In this work, this hypothesis is tested with missing values in data and results confirm the hypothesis in this context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SYSTEM MODELING WITH FUZZY MODELS: FUNDAMENTAL DEVELOPMENTS AND PERSPECTIVES

In this study, we offer a general view at the area of fuzzy modeling and fuzzymodels, identify the visible development phases and elaborate on a new and promisingdirections of system modeling by introducing a concept of granular models. Granularmodels, especially granular fuzzy models constitute an important generalization of existingfuzzy models and, in contrast to the existing models, generat...

متن کامل

Granular Computing on Extensional Functional Dependencies for Information System

Structure of Rough Approximations Based on Molecular Lattices p. 69 Rough Approximations under Level Fuzzy Sets p. 78 Fuzzy-Rough Modus Ponens and Modus Tollens as a Basis for Approximate Reasoning p. 84 Logic and Rough Sets Rough Truth, Consequence, Consistency and Belief Revision p. 95 A Note on Ziarko's Variable Precision Rough Set Model and Nonmonotonic Reasoning p. 103 Fuzzy Reasoning Base...

متن کامل

On Some Topological Properties of Pessimistic Multigranular Rough Sets

Rough set theory was introduced by Pawlak as a model to capture impreciseness in data and since then it has been established to be a very efficient tool for this purpose. The definition of basic rough sets depends upon a single equivalence relation defined on the universe or several equivalence relations taken one each at a time. There have been several extensions to the basic rough sets introd...

متن کامل

Rough Sets as a Framework for Data Mining

The issues of Real World are: a) Very large data sets b) Mixed types of data (continuous valued, symbolic data) c) Uncertainty (noisy data) d) Incompleteness (missing, incomplete data) e) Data change f) Use of background knowledge The main goal of the rough set analysis is induction of approximations of concepts. Rough sets constitute a sound basis for KDD. It offers mathematical tools to disco...

متن کامل

Modal Characterization of Visibility and Focus

Granular computing, based on rough set theory [1, 2], provides the basis for a new computing paradigm [3, 4]. Applying granular computing to logical reasoning processes, we have proposed granular reasoning for connecting possible world semantics and granular computing [5], and developed a granular reasoning framework called a zooming reasoning system [6–8]. The key concept of zooming reasoning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007